Question		on	Expected Answers		Additional Guidance
1					
	а	i	E = (Pt =) 36 x 3600	C1	allow I = 3 A and E = VIt, etc.
			$= 1.3 \times 10^5 (J)$	A1	accept 129600 (J)
		ii	$Q = E/V = 1.3 \times 10^{5}/12$ or $Q = It = 3 \times 3600$	C1	ecf (a)(i)
			$= 1.1 \times 10^4$	A1	accept 1.08 x 10 ⁴
			unit: C	B1	allow A s not J V ⁻¹
		iii	$Q/e = 1.1 \times 10^4/1.6 \times 10^{-19}$	C1	ecf (a)(ii)
			$= 6.9 \times 10^{22}$	A1	accept 6.75 or 6.8 x 10 ²² using 10800
	b	i	the average displacement/distance travelled of the electrons along the		no mark for quoting formula
			wire per second;	B1	allow in one second
			(over time/on average) they move slowly in one direction through the		
			metal/Cu lattice (when there is a p.d. across the wire);	B1	
			(because) they collide constantly/in a short distance with the lattice/AW	B1	max 2 marks from 3 marking points
		ii	select I = $nAev (= 3.0 A)$	C1	1 mark for correct formula
			$v = 3.0/8.0 \times 10^{28} \times 1.1 \times 10^{-7} \times 1.6 \times 10^{-19}$	C1	1 mark for correct substitutions into formula
			$= 2.1 \times 10^{-3} (m s^{-1})$	A1	1 mark for correct answer to 2 or more SF
			Total question 1	12	

Question		on	Answer	Μ	Guidance
2					
	а	i	Q = It= 0.45 x 4.67 x 60 x 60	C1	
			= 7600	A1	accept 7560 or 7570
			C or As	B1	
		ii	1 positive; 2 clockwise	M1	positive plus correct direction of arrow for first mark;
		1,2			do not penalise if arrow not labelled I.
		-	energy must be transferred to the cell	A1	allow (conventional) current is from positive to
			or current in opposite direction transfers energy from the cell to		negative ; or electron flow from - to + [but current
			the circuit/AW		must be clockwise in 1]
		3	$V_{xy} = 1.5 + 0.45 \times 0.90$	C1	•
			$V_{XY} = 1.9 (V)$	A1	accept 1.905 or 1.91
		4	P = VI = 0.45 x 1.5	C1	allow QV/t with ecf a(i) if necessary (11340/16800)
			P = 0.675 (J s ⁻¹)	A1	allow 0.7 as final line if 0.675 appears above
	b		1.cell across variable resistor R ammeter in series and voltmeter		QWC last marking point needed for full marks
			in parallel across R or cell	B1	
			2. Take (set of) readings of V and I for different positions/values		allow use (digital) voltmeter across unloaded cell to
			of the variable resistor	B1	find E; add R and find one value of V and I; then use
			3. plot a graph of V against I	B1	equation to find r (points 2 to 5)
			4.(find) y-intercept = E	B1	ignore sign of gradient in determining r
			5. (find) the gradient of the V against I graph which equals the		allow for no graph plot, using 2 pairs of values of V
			internal resistance in magnitude	B1	and I substituted into equation allows r and E to be
			or 4 or 5 take one pair of values of V,I and substitute		found.(points 2 to 5)
			into equation $E = V + Ir$ to find r or E		
	С	i	4 x 1.5 V cells gives 6.0 V with r of 3.6 Ω	B1	allow AW such as: 6 V but total R now 21.6 Ω ;
			so current is 6.0/(3.6 + 18) = 0.28 A	B1	6 V across 21.6 Ω gives 5 V across 18 Ω;
			requires $(2 \text{ W}/6 \text{ V} =) 0.33 \text{ A to light normally}$	B1	requires 6 V to light normally
			or power delivered = (0.28 ² x 18 or 5.0 x 0.28)= 1.4 W		allow $P = 1.(6)7$ W for 2 marks; only give the third
			alt: use 0.33 A & 6 V to show need emf of 7.2 V (1.8 V per cell)		mark if P labelled as power delivered by cell
			$1.5 \text{ n} = 0.33 (18 \pm 0.9 \text{ n})$ or $1.5 \text{ n} = 6 \pm 0.3 \text{ n}$	M1	alt: lamp needs $V = 6V$ and $I = 0.33$ A
			so $3.6 \text{ n} = 18 \text{ or } 1.2 \text{ n} = 6 \text{ giving } \text{n} = 5$	A1	terminal p.a per cell is $1.5 = V + 0.9 \times 0.33$
					giving $v = 1.2 v \text{ so } n = 6/1.2 = 5$
					allow trial and error method but working must be
				40	shown to score any marks
			I otal question 3	19	

Question		on	Expected Answers	Μ	Additional Guidance
3					
	а	i	(sum of/total) current into a junction equals the (sum of/total) current out conservation of charge	B1 B1	total vector sum of currents is zero
		ii	(sum of) e.m.f.s = (sum /total of) p.d.s/sum of voltages in/around a (closed) loop (in a circuit) energy is conserved	B1 B1	
	b		a photon is absorbed by an electron (in a metal surface); causing electron to be emitted (from surface). Energy is conserved (in the interaction).	B1 B1 B1	not hits QWC mark
			Only photons with energy/frequency above the work function energy/threshold frequency will cause emission Reference to Einstein's photoelectric energy equation (energy of photon) = (work function of metal) + (maximum possible kinetic energy of emitted electron) work function energy is the <u>minimum</u> energy to release an electron from the surface Number of electrons emitted also depends on light intensity	B1 B2 B1 B1	3 marks from 6 marking points in symbols only scores 1 mark out of 2, i.e. selects from formula sheet
			Emission is instantaneous	B1	
			i otal question 5	10	

Question		ion	Answer		Marks	Guidance
4	(a)	(i)	sum of/total current into a junction equals t current out conservation of charge	the <u>sum of/total</u>	B1 B1	total vector sum of currents is zero allow 'point in a circuit' for 'junction'
		(ii)	(sum of) e.m.f.s = <u>sum /total</u> of p.d.s/sum of a (closed) loop (in a circuit) energy is conserved	of voltages in/around	B1 B1	allow 'in a (closed) circuit' in place of 'loop'
	(b)	(current in 750 Ω = 0.020 A		A1	allow 20 mA or 0.02 A	
		(ii)	V across 750 Ω = 0.02 x 750 = 15 V		A1	ecf b(i)
		(iii)	$R_1 = (45 - 15)/0.03 = 1000 \Omega$ $R_2 = 15/0.01 = 1500 \Omega$		A1 A1	ecf b(ii)
	(c)	(correct symbol connected in circuit		B1	2 arrows pointing towards the resistor at about 45 ⁰ with or without a circle; arrows outside circle if drawn
A A A		(ii)	total R falls so I <u>in circuit/in R₁</u> increases so V across R ₁ increases <u>and</u> V across 75	0 Ω falls	B1 M1 A1	accept sum of R's in parallel falls R_1 is fixed so V across R_1 increases so V across R's in parallel falls (so V across 750 Ω falls) or correct potential divider argument
		(iii)	in series with LDR ammeter (A) 50 mA	in parallel with LDR voltmeter (V) 20 V	M1 A1 B1	allow voltmeter in parallel with $R_1 (30 - 50 V)$ allow multimeter connected as A (series) or V (parallel) and a correct unit for range given allow 20 to 100 mA; or 15 to 50 V
				Total	15	