

Question			Answer	M	Guidance
2					
	a	i	$\begin{aligned} & \mathrm{Q}=\mathrm{It}=0.45 \times 4.67 \times 60 \times 60 \\ & =7600 \\ & \mathrm{C} \text { or As } \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \end{aligned}$	accept 7560 or 7570
		$\begin{aligned} & \text { ii } \\ & 1,2 \end{aligned}$	1 positive; 2 clockwise energy must be transferred to the cell or current in opposite direction transfers energy from the cell to the circuit/AW	M1 A1	positive plus correct direction of arrow for first mark; do not penalise if arrow not labelled I . allow (conventional) current is from positive to negative ; or electron flow from - to + [but current must be clockwise in 1]
		3	$\begin{aligned} & V_{X Y}=1.5+0.45 \times 0.90 \\ & V_{X Y}=1.9(V) \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	accept 1.905 or 1.91
		4	$\begin{aligned} & \mathrm{P}=\mathrm{VI}=0.45 \times 1.5 \\ & \mathrm{P}=0.675\left(\mathrm{~J} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	allow QV/t with ecf a(i) if necessary (11340/16800) allow 0.7 as final line if 0.675 appears above
	b		1.cell across variable resistor R ammeter in series and voltmeter in parallel across R or cell 2.Take (set of) readings of V and I for different positions/values of the variable resistor 3.plot a graph of V against I 4. (find) y-intercept $=E$ 5.(find) the gradient of the V against I graph which equals the internal resistance in magnitude or 4 or 5 take one pair of values of V, I and substitute into equation $E=V+I r$ to find r or E	$\begin{aligned} & \text { B1 } \\ & \\ & \text { B1 } \end{aligned}$	QWC last marking point needed for full marks allow use (digital) voltmeter across unloaded cell to find E ; add R and find one value of V and I ; then use equation to find r (points 2 to 5) ignore sign of gradient in determining r allow for no graph plot, using 2 pairs of values of V and I substituted into equation allows r and E to be found.(points 2 to 5)
	c	i	$4 \times 1.5 \mathrm{~V}$ cells gives 6.0 V with r of 3.6Ω so current is $6.0 /(3.6+18)=0.28 \mathrm{~A}$ requires ($2 \mathrm{~W} / 6 \mathrm{~V}=$) 0.33 A to light normally or power delivered $=\left(0.28^{2} \times 18\right.$ or $\left.5.0 \times 0.28\right)=1.4 \mathrm{~W}$ alt: use $0.33 \mathrm{~A} \& 6 \mathrm{~V}$ to show need emf of $7.2 \mathrm{~V}(1.8 \mathrm{~V}$ per cell $)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	allow AW such as: 6 V but total R now 21.6Ω; 6 V across 21.6Ω gives 5 V across 18Ω; requires 6 V to light normally allow $P=1$.(6) 7 W for 2 marks; only give the third mark if P labelled as power delivered by cell
		ii	$\begin{aligned} & 1.5 n=0.33(18+0.9 n) \text { or } 1.5 n=6+0.3 n \\ & \text { so } 3.6 n=18 \text { or } 1.2 n=6 \text { giving } n=5 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	alt: lamp needs $\mathrm{V}=6 \mathrm{~V}$ and $\mathrm{I}=0.33 \mathrm{~A}$ terminal p.d per cell is $1.5=\mathrm{V}+0.9 \times 0.33$ giving $V=1.2 \mathrm{~V}$ so $\mathrm{n}=6 / 1.2=5$ allow trial and error method but working must be shown to score any marks
			Total question 3	19	

Question			Expected Answers	M	Additional Guidance
3					
	a	i	(sum of/total) current into a junction equals the (sum of/total) current out conservation of charge	$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \end{array}$	total vector sum of currents is zero
		ii	(sum of) e.m.f.s = (sum /total of) p.d.s/sum of voltages in/around a (closed) loop (in a circuit) energy is conserved	$\begin{array}{\|l} \hline \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \hline \end{array}$	
	b		a photon is absorbed by an electron (in a metal surface); causing electron to be emitted (from surface). Energy is conserved (in the interaction).	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	not hits QWC mark
			Only photons with energy/frequency above the work function energy/threshold frequency will cause emission Reference to Einstein's photoelectric energy equation $($ energy of photon $)=($ work function of metal $)+($ maximum possible kinetic energy of emitted electron) work function energy is the minimum energy to release an electron from the surface Number of electrons emitted also depends on light intensity Emission is instantaneous	B1 B2 B1 B1 B1	3 marks from 6 marking points in symbols only scores 1 mark out of 2, i.e. selects from formula sheet
			Total question 5	10	

Question			Answer	Marks	Guidance
4	(a)	(i)	sum of/total current into a junction equals the sum of/total current out conservation of charge	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	total vector sum of currents is zero allow 'point in a circuit' for 'junction'
		(ii)	(sum of) e.m.f.s = sum /total of p.d.s/sum of voltages in/around a (closed) loop (in a circuit) energy is conserved	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	allow 'in a (closed) circuit' in place of 'loop'
	(b)	(current in $750 \Omega=0.020 \mathrm{~A}$	A1	allow 20 mA or 0.02 A
		(ii)	V across $750 \Omega=0.02 \times 750=15 \mathrm{~V}$	A1	ecf b(i)
		(iii)	$\begin{aligned} & \mathrm{R}_{1}=(45-15) / 0.03=1000 \Omega \\ & \mathrm{R}_{2}=15 / 0.01=1500 \Omega \end{aligned}$	$\begin{aligned} & \hline \text { A1 } \\ & \text { A1 } \end{aligned}$	ecf b(ii)
	(c)	(correct symbol connected in circuit	B1	2 arrows pointing towards the resistor at about 45° with or without a circle; arrows outside circle if drawn
$\begin{aligned} & \mathrm{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$		(ii)	total R falls so I in circuit/in R_{1} increases so V across R_{1} increases and V across 750Ω falls	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	accept sum of R's in parallel falls R_{1} is fixed so V across R_{1} increases so V across R's in parallel falls (so V across 750Ω falls) or correct potential divider argument
		(iii)	in series with LDR ammeter (A) in parallel with LDR voltmeter (V) 50 mA 20 V	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	allow voltmeter in parallel with $R_{1}(30-50 \mathrm{~V})$ allow multimeter connected as A (series) or V (parallel) and a correct unit for range given allow 20 to 100 mA ; or 15 to 50 V
			Total	15	

